Biologists seek help to ‘see’ itty-bitty molecules in 3-D

Microscopy Masters asks one thing of citizen scientists: Find proteins in electron microscope images. The task will probably give participants new appreciation for biologists who decipher the structures of teeny, tiny molecules. It’s not easy.

The goal of the online project, created by researchers at the Scripps Research Institute in La Jolla, Calif., is to improve biologists’ ability to construct detailed, three-dimensional models of proteins.

Using cryo-electron microscopy — which involves freezing, then imaging a sample — the researchers have taken thousands of photos of their current target, a protein complex involved in breaking down other, unwanted proteins. Each image contains 10 to 100 copies of the complex. It takes that many images to capture a protein from every angle. Once the 2-D images are stitched together, researchers can reconstruct the protein’s globular, 3-D shape at near-atomic resolution.
Microscopy Masters enlists volunteers to do the necessary first step of combing through the photos to find the protein molecules — a time-consuming job that people do better than computers. The task may feel daunting, as each black-and-white image resembles a fuzzy TV screen. Only some of the dark smudges in any given image will be molecules of interest; others will be actual smudges or globs of proteins too jumbled to be of use. Fortunately, a practice tutorial offers a crash course in protein identification. And each image will be classified by many users, alleviating some of the pressure of worrying about marking the wrong thing.

Data from the project will help researchers improve protein-picking computer algorithms, says project member Jacob Bruggemann. That way computers can take over the painstaking work.

Bulging stars mess with planet’s seasons

SAN DIEGO — On some planets that orbit whirling stars, spring and autumn might be the best time to hit the beach, whereas summer offers a midyear respite from sweltering heat. These worlds’ orbits can take them over regions of their sun that radiate wildly different amounts of heat.

“Seasons on a planet like this must be really strange,” says Jonathon Ahlers, a graduate student at the University of Idaho in Moscow, who presented his findings June 15 at a meeting of the American Astronomical Society.
Some stars spin so fast that they bulge in the middle. That bulge pushes the equator away from the blazing core, making it much cooler than the poles. A fraction of these stars also host planets that travel on cockeyed orbits, which take these worlds alternately over the poles and equator of their sun.

Ahlers developed computer simulations to see how the differences in solar energy combined with the tilted orbits might affect a planet’s seasons. The outcome depends on how the planet’s axis is tipped relative to its orbit. For a world whose north and south poles periodically face the star’s equator, “you get a cooler summer than normal and an extremely cold winter, but spring and autumn can be hotter than summer,” says Ahlers. “You get two distinct hottest times of the year.”

How that plays out depends on how the planet is built: an atmosphere or oceans could mitigate climate extremes. Ahlers has yet to work out those details. “It’s doing a lot,” he says, “but what, I don’t really know yet.”